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SUMMARY

Sequential procedures are proposed (i) to construct fixed width confidence
interval for a linear function of means of k normal populations, and (ii) to

- estimate this linear combination pointwise (the loss being quadratic).
Asymptotic properties of the procedures are studied.
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_ Introducﬁ'on

Robbins, Simons, and Starr [7] developed sequentlal procedures to
construct fixed-width confidence interval for the difference of two normal
means. Sequentlal procedures for estimating this difference under quadra-

- tic loss functions have been discussed by Mukhopadhyay [3] and Ghosh

and Mukhopadhyay [2]. Sequential procedures for estimating a linear
funcfion of two and three normal means have been proposed by Mukho-
padhyay [5] and Mukhopadhyay [4], respectively. In the present- note,
sequential interval and point estimation procedures are derived for esti-
mating a linear function of the means of k normal populations. ’

Let {X ik j=1,2,...be asequence of random observations from the
ith = 1, 2, , k) normal population, with mean.y; and variance 67,
All the 2k parametera mie(— o0,00) and o:z(0, cO) are assumed to be
unknown. "For given non-zero constants Ay, ‘A,, ..., A, suppose one

/.

:
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K S
‘wishes to estimate p = _E A¢ . Without loss of generality, we assume

=
M= 1foralli=12,...,k .
Having observed a sample (Xi,, X, . . ., Xin, ) of size m(Z> 2) from

i ng .8
the ith population, let us define Xx,,, = ni1 % Xyand 6 = (m — 1)1
j=1 ‘

] — .2
Z (Xy— Xo; )3 de, ol denotes the sample variance based on a
j=1 ' -
k v
sample of size n; from the ith population. Moreover, forn = = n;, we
i=1

propose the estimator W, = Z X’,,i for w.,
i=1

In section 2, a confidence interval of prescribed width and coverage
" probability is constructed for . Section 3 is devoted to the point estima-
tion of B under quadratic loss structures.

Fixed Width Confidence Interval for

Given -the constants d, a(d > 0,0, < « < 1), suppose one wishes to
construct a confidence interval In of width 24 and confidence co_e:ﬂicient
1 — o for ¢ such that P(uels) > 1 — «. We propose In = [Wa — d,

W, + d]. Now using the fact that W, is normally distributed with mean
k

i and variance Z of ['m;, we obtam ‘
i=1

2 2 \-1/2
P(y.sl,,,)=2qi[d(% ot f’:—) :]—1 2.1)
1

where 9( + ) stands for the cdf of a standard normal variate.
Let ‘@’ be any constant such that

20(a) —1=1—uw (2.2)
Itis cieaf from (2.1) and (2.2) that in order to achieve P(pel,) > 1 — «,
n,, N, . . . , N must satisfy the condition

S SRR B I | ’s

n1+n2+"'+nk\b (2.3)

where b = (a/d)®. Moreover, using Lagrange’s method of undetermined
multipliers, the values n, 1y, . . ., ny of my, nz, . . ., m, Tespectively, for
which (2.3) holds and # is minimum, are given by
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n* = boy(s1 + o +lt o)
n;=b°'a(0'1+“a+ cootoop)

ny, = bog(oy 4+ 03 + ... + o)

However, in the absence of any knowledge about ¢;’s, no fixed sample
size procedure meets the requirements. In such a situation, we. adopt a
sequential procedure which is described as follows.

Start by taking at least m( 2> 2) observations from each of the k popu-
lations. If, upto any stage, N; = n, observations from {X;}, N, = n,
observations from {Xs;},. .., Nx = m: observations from {Xys} have been
taken, the next observation is taken '

(4y) from {Xy}, if

(&
"1/"2 o,(.:) ‘71(-2), ming < o 1)/0(:), cees mfm < (1)/0 )
(4,) from {Xy}, if
. ( ‘ .
malty < 0x fon, mafny < ool . L., mpfm < onyfon,
(4x) from { X}, if
(k) (1) ( ’ %y _(k—1)
mefm < o4l min, < / Ops oy MelMmy S op fome s (2.4)

and the stopping time N = N(d) is the smallest positive integer n > km
such that

n > qu)( 0.”1)+ (2) + + (k))

-

( ( (2
n, > bo 2)( O'ni) ‘I"‘ U'n) + ...+ O'r(lk))

e > bv‘»",}( o) 4 om + ..+ o"") “ @9

where N. = 21 Ni. When stop, construct IN for p,
l__
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The following theorem establishes the results that our sequential pro-
cedure is ‘‘asymptotically efficient” and ‘‘asymptotically consistent” in
Chow-Robbins [1] sense."

- k
THEOREM 1, Forall0 < os<oo(i= 1,2, ..., k)andn* =3 nf,
i=1
N
lim — = 1 as. ' .
d-0 17 : (2.6)
N '
Iim E(——) =1 ) 2.7
d-0 n* ‘ ‘ @7
lim Ppely) =1 — « ' : 2.8
i (pely | . (2.9)

Proof. Note the basic inequality

b o)+l a"") <SN< (am + o)+ 4 ol )+km ‘
| / | (2.9)

or,

\. 2
(1) (2) %) : ) ( k
(0131+0152+ .t N‘) N (o“,+a”+ +01(v)')

<= <
i+ + ...+ o0 nF ST (o F ot ...+ o) .
. : 1 km k

n*

where N/ = Ni or Ni—; (for i = 1, 2, . . ., k) depending on which popu-
‘lation is sampled at the final stage. If isth population is sampled at the
final stage then Ni = N;  — I and Nl =N,izZini=1,2,...,k

Now, using the fact that foralli= 1,2, ..., kdlim N; = o0 as., (2.9)
-0

gives (2.6). .
" It follows from Wiener ergodic theorem (see, Wiener [10]) that for all

i= 1,2, ", k, sup {0,. )}2 has 1ts second moment finite. Thus, the

. nijz= ~. ‘
expression on the right hand side of N/n* in (2 9) is mtegrable and (2.6), S “
together with dominated convergence theorem provides (2.7).

Finally, note that

Iy = 28] a (2 LAy e
Pleeln) = [‘P«(?vtf--- N,:) ] : | |

Now, using the technique vof Robbins, Simons, and Starr [7], (2.6) qnd o
dominated convergence theorem lead us to (2.7)
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Point Estiniation of

Let the total loss incurred in t:stiniétiné w by W, be squared-error plus
the linear cost of sampling, i.e., .

L(e) = A7, —) + ol +ny + .. + o) 3.1

where A(> 0) is known weight, and ¢(> 0) is the known cost of sampl-
ing per unit observation.
For the loss La(c), the risk comes out to be

m@=dA( Db T )
n - ny 'n_' e n (4 nl 112 PN ny
1 2 k .

(3.2)

Treating #i’s as continuous variables, the values Ny, Wy, ..., 1y of iy, g,

, i, respectively, which minimize v,(c) are '

Bt = (A oy 1 = (AN oy, .., n= (4P o, (3.3)

‘  k
and, for n* = I nj, the corresponding minimum risk is
i=1 .
vi(e) = 2cn* ‘ o ©(3.4)

However, when all or some ofsthe o;s are unknown, no fixed sample
size procedure serves the purpose. In this situation, adopt the following
sequential procedure.

The sampling scheme is same as that defined at (2 4), Motivated from
(3.3), the stopping time N = N(c) is the smallest positive integer # 2> km

‘such that -~ .

m>ummﬁhm>wwmg“”m>uwn@ (3.5)

When stop, estimate ¢ by Wa. ‘
As in Starr [9], define the risk-efficiency of the sequent1a1 procedure
to be -

2(0) = AP o (3.6)

where v(c) is the expected-loss of the sequential procedurc, ie.,
2 ' E
o) = AE( + o + —) + cE(N) (3.7)
1 2 .

Now prove the following theorem, which establishes the results that
our.sequential procedure is asymptotlcally as efficient as the ‘optimal fixed
sample size procedure.
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~ : k
THEOREM 2; Forall 0 <oy <oo(i=1,2,...,k)andn* = & nj,
N . i=1

N o '
lim — =1a.s. 3.8
e>0 N . (3.8)
N\ ’ :
lim E(——) =1 . 3.9)
>0 \ n* . (
lim n(c) = 1 ' | (3.10)
c=0 ’ )
Proof It is easy to verify. that for all i = 1,2,...,k, lim N; = oo a.s.

c=0
Now the proofs of (3.8) and (3.9) are similar to that of (2.6) and (1.7),
‘respectively.
From (3.4) and (3.7), substltutmg the values of vu*(c) and v(c), we
obtain after little algebra

}

_ i E@mi[Ny) + n5 E(3[No) + ... + ni E(nk/Nk) 1 ( N
() = T e ) tiE )
Since lim / N/n*) = 1, it suffices to prove that for all i=1,2,...k,
Toe»0 .

In? - Lo
lim E( g ) =1, ) -
0 Ni . ) ‘
‘We shall establish the proof of lim0 E(n1/N,) = 1 only, and the remain-
~ c>0 -
ing proofs are’ ‘routine.

From lim N,/n} = 1 a.s. and Fatou’s lemma,
c=>0 )

lim inf E( ) >1 » . ) 3.11)

c->0 .

To prove “lim sup” part, we procced as follows.

Define the following quantities

8 = (14 &) OD<e<])

. "1 2.

a,.l = _.2 ("1 —_ l) (_:—%)
0, 1y — (m—1)[2
Hne, n}) = I‘-l( 14 u) m—1)

a ny
) = (e 1y, D)
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It is to be noted that L(n,) is mdependent of n3.

Wnte A
E( Ni ‘) = 3w P(Y, = m)
’ n1>m
=m + T + T (SaY)
where
T, = m P(Ny = m), my = 2 ' P(N,=my),
‘ . m4+-1<m<t

Ty= I m' P(N, = n,)

ny >0
First of all

™ = m P{ m 2 (A/c')w.v‘m“}

PRI PPES

“*4ﬁw<w—”ﬁﬁﬂ

a

= 1 1 (L”_Z_L) X g% D12l gy
' | ' 0

< m i(m, n})
m (- L)

o2

Secondly, -
T < (m+ 1) % P(N; = m)
. m4+-1<n, <0
<mipr 3 4m>umwﬁ}
m+1<n1<0 ) :
2
= (m+ 1)1 z { X(n < (m 1)( ) }
mi+-1<n <6 1
=(m+ D 2 I(ny, n3)
m+1<nm <6 >
=m+ 1)t = (n1)~ " L(ny)
m+-1<m<o

< (m + 1) (ni)y™™ b L(ny)
m41<m <0
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Using the fact that L(n;) is monotonic increasing in n,, we get

7, < (m + 1) (6 — m) L(O) . (3.13)

Finally,
£ 6t P(N, > 0) ) " (3.14)
" Combining (3.12), (3.13) and (3.14), we obtain . '
lim sup E(ﬂ ) <1 — 3e) \ @19
" e=0 Ny T . : - -

where 0 < 3(¢) < 1. Since ¢ is arbitrary, inequalities (3.11) and (3.15)
jointly provide lim E(n}/Ny) = 1. C
. c>0

\

\
Remark : It is to be noted that not only the sequential procedures
developed by Robbins, Simons and Starr [7], Mukhopadhyay [4], [5] and
Ghosh and Mukhopadhyay [2] are particular cases of our procedures, the
sequential point and interval estimation procedures derived by Robbins [6]
and Starr [8], respectively follow immediately just by taking k = 1.

ACKNOWLEDGEMENT

The authors are thankful to the referee for his many valuable com-
. ments, and for pointing out a-mistake in the original manuscript.

REFERENCES
- N
[1] Chow, Y. S. and Robbins, H. (1965) : On the asvmptotic theory of fixed width
sequential confidence intervals for the mean, Ann. Marh. Stat., 36 : 457-462.
[2] Ghosh, M. and Mukhopadhyay, N. (1980) : Sequential point estimatiop of the
difference of two normal means, Ann. Math. Stat., 8 : 221-225.
[3]1 Mukhopadhyay, N. (1975) : Sequential methods in estimation and prediction,
Ph.D. dissertation, 18], Calcutta.
[4] Mukhopadhyay, N. (1976) : Sequential estimation of a linear function of means
of three noirmal populations, Jour, Amer. Statist. Assoc., 71 : 149-153.
[5] Mukbopadhyay, N. (1977) : Remarks on sequential estimation of a linear func-
tion of two means : The normal case, Metrika, 24 : 197-201.
[6] Robbins, H. (1959) : Sequential estimation of the mean of a normal populatlon
Prob. and Stat. (H. Cramer’s Vol.), Uppsala, 235-245.
[7] Robbins, H. Simons, G. and Starr, N. (1967) : A sequentlal analogue of the ~
Behrens—Fisher problem, Ann. Math. Stat., 38 : 1384-1391.
' [8] Starr, N. (1966a) : The performance of a scquentlal_procedure for the fixed-width
interval estimation of the mean, Ann. Math. Stat., 37 : 36-50.
[9] Starr, N. (1966b) : On the asymptotic efficiency of a sequential procedure for
estimating the mean, Ann. Math. Stat.,'37 : 1173-1185. '
[10] Wiener, N. (1939) : The ergodic theorem, Duke Math. Jour., 5 : 1-18.




